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A mathematical model of amperometric biosensors in which chemical amplification
by cyclic substrate conversion takes place in a single enzyme membrane has been devel-
oped. The model involves three regions: the enzyme layer where enzyme reaction as
well as mass transport by diffusion takes place, a diffusion limiting region where only
the diffusion takes place, and a convective region where the analyte concentration is
maintained constant. Using computer simulation the influence of the thicknesses of
the enzyme layer and the diffusion region on the biosensor response was investigated.
This paper deals with conditions when the mass transport in the exterior region may
be neglected to simulate the biosensor response in a well-stirred solution. The digital
simulation was carried out using the finite difference technique.
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1. Introduction

Biosensors are analytical devices which convert a biological response into
an electrical signal [1–3]. The biosensors yield a signal, which is proportional to
the concentration of measured analyte. The biosensors are classified according
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to the nature of the physical transducer. In cases of amperometric biosensors the
potential at the electrode is held constant while the current flow is measured.

The amperometric biosensors are reliable, relatively cheap and highly
acceptable for environment, clinical and industrial purposes [4–6]. The detection
limit of the biosensors depends upon sensitivity [7–9]. The biosensors, sensitivity
can be increased significantly by cyclic conversion of the substrate [10–12].

In the literature, mathematical models have been widely employed to inves-
tigate the kinetic peculiarities of the amperometric biosensors including the bio-
sensors with cyclic conversion of the substrate [13–17]. Models coupling the
enzyme-catalysed reaction with the diffusion in an enzyme layer (membrane) are
usually used [18,19]. In cases when the analyte is assumed to be well stirred and
in powerful motion, the mass transport by diffusion outside the enzyme mem-
brane is usually neglected.

The goal of this investigation is to make a mathematical model of ampero-
metric biosensors in which chemical amplification by cyclic substrate conversion
takes place in a single enzyme membrane [20]. The model involves three regions:
the enzyme layer where enzyme reaction as well as mass transport by diffusion
take place, a diffusion limiting region where only a mass transport by diffusion
takes place, and a convective region, where the analyte concentration is main-
tained constant [15,21,22].

Using computer simulation the influence of the thickness of the enzyme
membrane as well the diffusion layer on the biosensor response was investigated.
This paper analyses conditions when the mass transport outside the enzyme
membrane may be neglected to simulate the biosensor response accurately in a
well-stirred solution. The computer simulation was carried out using the finite
difference technique [21,23].

2. Mathematical model

A membrane biosensor may be considered as an electrode, having a layer
of enzyme applied onto the electrode surface. We consider a scheme of substrate
(S) electrochemical conversion to a product (P) following catalysed with enzyme
(E) product conversion to substrate [20].

S −→ P
E−→ S (1)

Assuming the symmetrical geometry of the electrode and homogeneous dis-
tribution of immobilised enzyme in the membrane, the dynamics of the biosensor
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can be described by the reaction–diffusion system (t > 0)

∂Se

∂t
= DSe

∂2Se

∂x2
+ VmaxPe

KM + Pe

,

(2)
∂Pe

∂t
= DPe

∂2Pe

∂x2
− VmaxPe

KM + Pe

, x ∈ (0, d),

∂Sb

∂t
= DSb

∂2Sb

∂x2
,

(3)
∂Pb

∂t
= DPb

∂2Pb

∂x2
, x ∈ (d, d + δ),

where x and t stand for space and time, respectively, Se(x, t), Sb(x, t) (Pe(x, t),

Pb(x, t)) are the substrate (reaction product) concentrations in the enzyme and
bulk solution, respectively, d is the thickness of the enzyme membrane, δ is the
thickness of the diffusion layer, DSe

, DSb
, DPe

, DPb
are the diffusion coefficients,

Vmax is the steady-state enzymatic rate and KM is Michaelis constant.
Let x = 0 represent the electrode surface, while x = d represents the bound-

ary layer between the analysed solution and enzyme membrane. The operation
of the biosensor starts when the substrate appears over the surface of the enzyme
membrane. This is used in the initial conditions (t = 0)

Se(x, 0) = 0, Pe(x, 0) = 0, x ∈ [0, d],

Se(d, 0) = S0, Pe(d, 0) = 0,

Sb(x, 0) = S0, Pb(x, 0) = 0, x ∈ [d, d + δ],

(4)

where S0 is the concentration of the substrate to be analysed.
In the scheme (1) the substrate is electro-active substance. The electrode

potential is chosen to keep zero concentration of the substrate at the electrode
surface. During the electrochemical conversion the product is generated. The rate
of the product generation at the electrode is proportional to the rate of conver-
sion of the substrate. Consequently, the boundary and matching conditions are
(t > 0)

Se(0, t) = 0, Se(d, t) = Sb(d, t), Sb(d + δ, t) = S0,

DPe

∂Pe

∂x

∣∣∣
x=0

= −DSe

∂Se

∂x

∣∣∣
x=0

,

Pe(d, t) = Pb(d, t), Pb(d + δ, t) = 0,

(5)
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DSe
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∂x

∣∣∣
x=d

= DSb
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,

DPe

∂Pe
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= DPb
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∣∣∣
x=d

.

(6)

The concentration S of the substrate S and the concentration P of the reac-
tion product P can be defined in entire domain x ∈ [0, d + δ] as follows (t ≥ 0):

S(x, t) =
{

Se(x, t), x ∈ [0, d],

Sb(x, t), x ∈ (d, d + δ],

P (x, t) =
{

Pe(x, t), x ∈ [0, d],

Pb(x, t), x ∈ (d, d + δ].

(7)

Both concentration functions: S and P are continuous in the entire domain
x ∈ [0, d + δ].

The measured current is accepted as a response of a biosensor in a physi-
cal experiment. The current depends upon the flux of the electro-active substance
(substrate) at the electrode surface, i.e. at the border x = 0. Consequently, a
density I (t) of the biosensor current at time t can be obtained explicitly from
Faraday’s law and Fick’s law

I (t) = neF DSe

∂Se

∂x

∣∣∣
x=0

= −neF DPe

∂Pe

∂x

∣∣∣
x=0

, (8)

where ne is the number of electrons involved in a charge transfer, F is Faraday
constant, F ≈ 9.65 × 104 C/mol.

We assume, that the system (3)–(6) approaches a steady-state as t → ∞
I∞ = lim

t→∞I (t). (9)

I∞ is assumed as the steady-state biosensor current.

3. Computer simulation

The problem (3)–(6) was solved numerically using the finite difference tech-
nique [21,23]. To simulate the biosensor action for t ∈ [0, T ] we introduce a uni-
form discrete grid ωh × ωτ , where

ωh = {xi : xi = ih, i = 0, . . . , Nd, . . . , N; hNd = d, hN = d + δ},

ωτ = {tj : tj = jτ, j = 0, . . . , M; τM = T }.
(10)

We assume the following

S
j

i = S(xi, tj ), P
j

i = P(xi, tj ), Ij = I (tj ), i = 0, . . . , N; j = 0, . . . , M. (11)
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We use an implicit difference scheme where the differential equations (3)
and (4) are replaced with the following difference equations:

S
j+1
i − S

j

i

τ
= DSe

S
j+1
i+1 − 2S

j+1
i + S

j+1
i−1

h2
+ VmaxP

j

i

KM + P
j

i

,

P
j+1
i − P

j

i

τ
= DPe

P
j+1
i+1 − 2P

j+1
i + P

j+1
i−1

h2
− VmaxP

j

i

KM + P
j

i

,

i = 1, . . . , Nd − 1, j = 1, . . . , M,

(12)

S
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i − S

j

i

τ
= DSb

S
j+1
i+1 − 2S

j+1
i + S

j+1
i−1

h2
,

P
j+1
i − P

j

i

τ
= DPb

P
j+1
i+1 − 2P

j+1
i + P

j+1
i−1

h2
,

i = Nd + 1, . . . , N − 1, j = 1, . . . , M.

(13)

The initial conditions (4) are approximated by

S0
i = 0, i = 0, . . . , Nd − 1,

S0
i = S0, i = Nd, . . . , N,

P 0
i = 0, i = 0, . . . , N.

(14)

The boundary and matching conditions (5) and (6) are approximated as
follows:

S
j

0 = 0, S
j

N = S0,

DSe
(S

j

Nd
− S

j

Nd−1) = DSb
(S

j

Nd+1 − S
j

Nd
), j = 1, . . . , M.

(15)

DPe
(P

j

1 − P
j

0 ) = −DSe
(S

j

1 − S
j

0 ),

DPe
(P

j

Nd
− P

j

Nd−1) = DPb
(P

j

Nd+1 − P
j

Nd
), P

j

N = 0, j = 1, . . . , M.
(16)

The resulting systems of linear algebraic equations are solved efficiently
because of the tridiagonality of their matrices.

Having a numerical solution of the problem, the density of the biosensor
current at time t = tj can be calculated easily by

I (tj ) = neFDSe
(S

j

1 − S
j

0 )/h, j = 0, . . . , M. (17)
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In digital simulation, the biosensor response time T = TR was assumed as
the time when the absolute current slope value falls below a given small value
normalised with the current value. In other words, the time

TR = min
I (tj )>0

{
tj :

1
I (tj )

|I (tj ) − I (tj−1)|
τ

< ε , j = 1, . . .

}
(18)

needed to achieve a given dimensionless decay rate ε is used. In calculation, we
employ ε = 10−5. The current I (TR) was assumed as an approximation of the
steady-state current I∞, I∞ ≈ I (TR).

The digital simulator has been programmed in C language [24].

4. Results and discussion

Using numerical simulation, the influence of the thickness of both layers:
the enzyme and diffusion on the steady-state current was investigated. The fol-
lowing values of the parameters were constant in the simulation of all the exper-
iments discussed below:

DSe
= DPe

= 3.0 × 10−6 cm2/s,

DSb
= 2DSe

, DPb
= 2DPe

,

KM = 10−7 mol/cm3
, S0 = 2 × 10−8mol/cm3

, ne = 2.

(19)

The thickness d of the enzyme membrane of a biosensor can usually
be measured physically rather precisely. The thickness δ of the diffusion layer
depends upon the stirring of the buffer solution. The thickness δ is inversely
proportional to the intensity of the stirring (rotation speed of the electrode).
The more intensive the stirring is, the thinner the diffusion layer is. No exact
analytical expression of δ is available for stirred solutions. δ can be estimated
experimentally by measuring the electrode response at a given bulk concentra-
tion. Furthermore, δ depends upon the type of stirring.

4.1. The dynamics of the biosensor current

We calculate the biosensor current at an ordinary thickness d = 0.01 cm
of the biosensor membrane. The biosensor response was simulated at different
thickness δ of the diffusion layer to simulate the biosensor action at different
conditions of analyte stirring. Figure 1 shows the biosensor current at the steady-
state enzymatic rate Vmax = 10−8 mol/cm3s.

One can see in figure 1 that the steady-state current decreases slightly with
increase of the thickness δ of the diffusion layer. The time of the steady-state
current significantly increases with increase of δ.
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Figure 1. The dynamics of the biosensor current I at the membrane thickness d = 0.01 cm and
different thickness δ of the diffusion layer, Vmax = 10−8 mol/cm3s.

Four parameters: Vmax, KM, d and DSe
are among the parameters signifi-

cantly influencing the behaviour of biosensors [13,19]. The biosensor response
is known to be under mass transport control if the enzymatic reaction in
the enzyme layer is faster than the transport process. The diffusion modu-
lus (Damköhler number) σ 2 essentially compares the rate of enzyme reaction
(Vmax/KM ) with the diffusion through the enzyme layer (DSe

/d2)

σ 2 = Vmaxd
2

DSe
KM

. (20)

If σ 2 < 1, the enzyme kinetics controls the biosensor response. The response
is under diffusion control when σ 2 > 1. At values of DSe

and KM given in (19),
d = 0.01 cm, and Vmax = 10−8 mol/cm3s the diffusion modulus σ 2 equals approx-
imately 3.3. Consequently, figure 1 shows the biosensor behaviour in a case when
the response is under diffusion control.

We calculate the biosensor current at 10 times thinner membrane
d = 0.001 cm and the same Vmax = 10−8 mol/cm3s as above, σ 2 ≈ 0.33 < 1,
to investigate the dynamics of the current in a case when the enzyme kinetics
controls the biosensor response. Results of calculations are presented in figure
2. One can see in figure 2 that the steady-state current decreases with increase
of the thickness δ. This decrease is more significant than in the previous case
of d = 0.01 cm when the biosensor response is under diffusion control. In the
case when the enzyme kinetics controls the biosensor response (figure 2), the
time of the steady-state current increases with increase of δ similar to the thicker
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Figure 2. The dynamics of the biosensor current I at the membrane thickness d = 0.001 cm and
different thickness δ of the diffusion layer, Vmax = 10−8 mol/cm3s.

membrane (d = 0.01 cm). Figure 2 shows that the biosensor current is a non-
monotonous function of time when the thickness of the diffusion layer exceeds
greatly the thickness of the enzyme membrane (δ > 1.5d). In the beginning of the
biosensor action, the current increases, while later it starts to decrease. We notice
that the biosensor current was distinctly a monotonous function of time in the
previous case when the biosensor response is under diffusion control (figure 1).
The non-monotonicity of the biosensor current has not been observed also in
cases of amperometric biosensors without substrate cyclic conversion at similar
conditions [22].

One can see in figure 2 that in the cases when δ > 1.5d, the steady-state
current is notably less (about 43%) than in the case when the diffusion layer
is neglected, δ = 0. No notable difference is observed between the steady-state
currents in all cases δ > 1.5d. Similar effect was also observed in the case of
amperometric biosensors acting without substrate cyclic conversion [22].

4.2. The effect of the thickness of diffusion layer on the biosensor response

We investigate the dependence of the steady-state biosensor current on the
relative thickness of the diffusion layer. We consider a dimensionless ratio k of
the thickness δ of the diffusion layer to the thickness d of the enzyme layer,
k = δ/d, k � 0, as the relative thickness of the diffusion layer.

The steady-state current I∞ is very sensitive to the thickness of the enzyme
layer. I∞ varies even in orders of magnitude [25]. Because of this we normalise
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Figure 3. The normalised steady-state biosensor current IN versus ratio k = δ/d at Vmax = 10−7

mol/cm3s and different values of the membrane thickness d (cm).

the steady-state biosensor current to evaluate the effect of the ratio k on the bio-
sensor response. The normalised steady-state biosensor current IN is expressed
by the steady-state current at the thickness δ of the diffusion layer divided by
the steady-state current assuming the zero thickness of the diffusion layer

IN(d, δ) = I∞(d, δ)

I∞(d, 0)
, d > 0, δ � 0, (21)

where I∞(d, δ) is the steady-state current (see equations (8) and (9)) calculated
at given thickness d of the membrane and thickness δ of the diffusion layer.

The biosensor response versus the dimensionless ratio k = δ/d was investi-
gated at different steady-state enzymatic rates Vmax and the membrane thickness
d. Results obtained at Vmax = 10−7 mol/cm3s are depicted in figure 3.

One can see in figure 3 that the steady-state biosensor current notably
decreases with increase of the ratio k in cases when the enzyme membrane thick-
ness d is equal to 0.002 cm or less. That decrease is not linear. In cases of rel-
atively thick enzyme membranes (d � 0.005 cm), the influence of the thickness
δ of the diffusion layer on the biosensor response is not great. In the case of
d = 0.005 cm the steady-state current decreases less than 1.5% only, while in the
case of d = 0.0005 cm it decreases even more than 2.5 times, IN ≈ 0.37, when
k changes from 0 to 4. Consequently, the mass transport by the diffusion out-
side the enzyme membrane may be neglected only in the cases of relatively thick
membranes.
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DSe
and KM are constant in all our numerical experiments as defined in

(19). We express the membrane thickness d1 through Vmax at σ = 1

d1(Vmax) = σ ×
√

DSe
KM

Vmax
=

√
3 × 10−13

Vmax
. (22)

Comparing the membrane thickness d of 0.002 cm with d1(10−7) ≈ 0.0017 cm
at which the diffusion modulus σ equals unity for Vmax = 10−7 mol/cm3s, we
notice that the behaviour of the steady-state current favourably depends on that
either the enzyme kinetics or the diffusion controls the response.

Figure 3 shows that in cases when the enzyme kinetics distinctly con-
trols the biosensor response (d � d1, σ 2 � 1), the steady-state current signifi-
cantly decreases with increase of the relative thickness of the diffusion layer,
i.e. with increase of the ratio k. In cases when the response is distinctly under
diffusion control (d � d1, σ 2 � 1), variation of the ratio k practically does not
effect the steady-state current. Consequently, in cases of relative thick biosen-
sors, the response practically does not depend on the intensity of stirring of
the buffer solution. To be sure that these properties are valid at wide range of
the steady-state enzymatic rate Vmax, we calculate the biosensor response also at
Vmax = 10−8 mol/cm3s and the same values of the ratio k as well as membrane
thickness d. The results of the calculations are depicted in figure 4.

Since d1(10−8) ≈ 0.0055 cm is considerably greater than d1(10−7), the min-
imal membrane thickness, at which the thickness of the diffusion layer starts to
make no notable effect on the biosensor response, is greater at Vmax = 10−8

mol/cm3s (figure 4) rather than at Vmax = 10−7 mol/cm3s (figure 3). At the mem-
brane thickness d of 0.005 cm the steady-state current decreases about 1.5 times
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(IN ≈ 0.63) at Vmax = 10−8 mol/cm3s when k changes from 0 to 4. The cor-
responding decrease is less than 1.5% in the case of Vmax = 10−7 (figure 3). In
a case of thicker membrane d = 0.02 cm (σ 2 ≈ 1) (figure 4), the steady-state
current decreases only about 1.0% when k changes from 0 to 4 and Vmax =
10−8 mol/cm3s. Consequently, in cases of relative thick biosensors (d � d1,
σ 2 � 1), the biosensor response practically does not depend on the intensity
of stirring of the buffer solution at a wide range of the steady-state enzymatic
rate Vmax.

4.3. The importance of the Nernst diffusion layer when solution is well stirred

The thickness δ of the diffusion layer depends upon the nature and stir-
ring of the buffer solution. Usually, the more intensive stirring corresponds to
the thinner diffusion layer. That diffusion layer is known as the Nernst dif-
fusion layer [26]. The thickness of the Nernst diffusion layer practically does
not depend upon the membrane thickness. In practice, the zero thickness of the
Nernst layer can not be achieved. In a case, when the solution to be analysed
is stirred by rotation of the enzyme electrode, the thickness of the Nernst dif-
fusion layer may be minimized up to δ = 0.0002 cm by increasing the rotation
speed [27]. However, in an another frequently used case, when the solution is
stirred in a magnetic stirrer, it is difficult to achieve the thickness δ less than
about 0.002 cm.

In the cases when an analyte is well stirred and in powerful motion,
the mass transport by diffusion outside the enzyme membrane rather often is
neglected [14,21]. We assume that a biosensor model, taking into consideration
the Nernst diffusion layer, describes the biosensor action more precisely than
an another model where the Nernst diffusion layer is neglected. In addition, we
assume that the Nernst diffusion layer of thickness δ may be neglected for a bio-
sensor having membrane thickness d only if the steady-state current calculated
considering the Nernst layer is approximately the same as in the case when the
Nernst diffusion layer is neglected. Consequently, the Nernst diffusion layer may
be neglected if I∞(d, δ) ≈ I∞(d, 0), i.e. IN(d, δ) ≈ 1.

We investigate the conditions when the Nernst diffusion layer may be
neglected to simulate accurately the response of biosensors. To investigate the
effect of the Nernst diffusion layer on the biosensor response when the analyte
is well stirred and in powerful motion we calculate the normalised steady-state
current IN(d, δ) at practically minimal thickness of the diffusion layer character-
istic for both types of stirring: by electrode rotation and in a magnetic stirrer.
Since the effect of the diffusion layer on the biosensor response depends upon
the membrane thickness [22], we calculate the normalised current changing the
membrane thickness d from 10−5 to 4 × 10−2 cm.
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Figure 5. The normalised steady-state biosensor current IN versus the enzyme membrane thickness
d at the thickness δ = 0.0002 cm of the Nernst diffusion layer and different steady-state enzymatic

rates Vmax (mol/cm3s).

Figure 5 shows the results of calculations at the thickness δ = 0.0002 cm
while figure 6 shows the results at 10 times thicker (δ = 0.002 cm) than the
Nernst diffusion layer.

One can see in figure 5, the effect of the Nernst layer decreases with
increase of the membrane thickness d. The Nernst diffusion layer of the thick-
ness of 0.0002 cm should be taken into consideration in all the cases when the
enzyme membrane is thinner than about 0.002 cm. Figure 5 shows that the simu-
lated steady state current I∞ may be even more than 10 times greater (IN < 0.1)
than the true current if the Nernst diffusion layer is neglected in cases of thin
enzyme membranes, d ≤ 10−5 cm, when an analyte is well stirred and in pow-
erful motion. The effect of the Nernst diffusion layer becomes slight only in
the cases when the membrane is more than 10 times thicker than the diffusion
layer, d > 10δ = 0.002 cm. Assuming high speed rotation of the electrode (δ =
0.0002 cm), inactive enzyme (Vmax = 0) and the membrane thickness d = 10δ,
the normalised current IN equals approximately 0.95, i.e. the steady-state current
(I∞(0.002, 0.0002)) in the case when the Nernst diffusion layer is taken into con-
sideration is about 5% less than the steady-state current (I∞(0.002, 0)) in the case
when the Nernst diffusion layer is neglected.

As it is possible to notice in both figures 5 and 6, IN increases with increase
of the membrane thickness d. On the other hand, IN is less at less steady-state
rate Vmax rather than at higher Vmax. Consequently, the influence of the Nernst
diffusion layer on the biosensor response grows with decrease of the steady-state
enzymatic rate. Figures 5 and 6 show, that the effect of the steady-state enzy-
matic rate Vmax on the behaviour of IN as well as I∞ is very small in cases of
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Figure 6. The normalised steady-state biosensor current IN versus the enzyme membrane thickness
d at the thickness δ = 0.0002 cm of the Nernst diffusion layer and different steady-state enzymatic

rates Vmax (mol/cm3s).

thin enzyme membranes, d < 10−4 cm. The most significant effect of Vmax on IN

is notable at the membrane thickness d ≈ 10−3 for both thickness of the Nernst
layer: 0.0002 cm (figure 5) and 0.002 cm (figure 6). However, in the case of the
thin Nernst diffusion layer (δ = 0.0002 cm, figure 5) the effect of the steady-state
enzymatic rate Vmax is rather slight in an entire domain of the membrane thick-
ness d ∈ [10−5, 4 × 10−2].

Figure 6 shows that the Nernst diffusion layer of the thickness δ of
0.002 cm should be taken into consideration in all the cases when the enzyme
membrane is thinner than about 0.02 cm, i.e. d < 10δ.

5. Conclusions

The mathematical model (3)–(6) of operation of amperometric biosensors
with substrate cyclic conversion can be used to investigate regularities of the bio-
sensor response in stirred and non-stirred analytes.

In the cases when the thickness δ of the diffusion layer is more than half
as great as the thickness d of the enzyme membrane (δ > 1.5d) and the enzyme
kinetics distinctly controls the biosensor response (diffusion modulus σ 2 signif-
icantly less than unity), the biosensor current is a non-monotonous function
of time (figure 2). Otherwise, the biosensor current is a monotonous increasing
function of time (figures 1 and 2). In all the cases a steady-state is achieved.

The steady-state current is a monotonous decreasing function of the ratio k

of the thickness of the diffusion layer to the thickness of the enzyme membrane
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(figures 3 and 4). In particular cases when the biosensor response is distinctly
under diffusion control (σ 2 � 1), variation of k practically does not effect the
steady-state current. Consequently, in the cases when σ 2 � 1, the biosensor
response practically does not depend upon the intensity of stirring of the buffer
solution (upon rotation speed of the electrode).

In the cases of low enzymatic activity (Vmax → 0) the Nernst diffusion
layer of the thickness δ > 0 should be taken into consideration if the enzyme
membrane is thinner than about 10δ, i.e. d < 10δ (figures 5 and 6). Increase of
Vmax allows to neglect the Nernst diffusion layer at thinner enzyme membranes
than 10δ.
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